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Abstract—The trend analysis is carried out using the variate difference method. The variate 
difference method is useful to decide the nature of trend (1st degree or 2nd degree or 3rd 
degree etc). There are several models to represent a given time series. No formula can 
directly be used to measure the random component of the series at any point of time. To 
select an appropriate polynomial for fitting of time series we can make use of variate 
difference method.  This method also enables us to estimate the random component in the 
series and forecast the future Age Adjusted Rates. 

I. INTRODUCTION 

Time series data of lung cancer in males and females in Bengaluru is obtained from the National Cancer 
Registry Programme from the year 1982 to 2009[a].  
The values corresponding to 1982, 1983 and 1984 are outliers in the data. If we observe the trend of Age 
Adjusted Rates (AAR) of cancer over the years, we observe oscillations in the graph. Then we can say that 
the oscillatory AAR of cancer are due to unknowable risk factors affecting cancer.  One such risk factor is 
increasing tendency of pollution in the air.  In metropolitan cities, due to pollution in the air, the lungs of 
most of the children are found to be weak.  Air pollution mainly affects the respiratory system of the body.  
Some organs associated with the respiratory system are Larynx, hypopharynx, lungs and oral cavity. 

Literature Survey 
Neelabh and Ramanathan (2011) developed a new approach for order selection in autoregressive moving 
average models using the focused information criterion. This criterion minimizes the asymptotic mean 
squared error of the estimator of a parameter of interest. Simulation studies indicate that the suggested 
criterion is quite effective and comparable to the Akaike information criterion, the corrected Akaike 
information criterion and the Bayesian information criterion in autoregressive moving average order 
selection. The use of focused information criterion for simultaneous selection of regression variables and 
order of the error process in a linear regression model with autoregressive moving average errors is also 
considered. [1] 
In time series analysis, once the data have been transformed to fit a zero - mean autoregressive moving 
average (ARMA) model, we face the problem of order selection. Three celebrated procedures, namely the 
Akaike information criterion (AIC), the corrected Akaike information criterion and the Bayesian information 
criterion have been extensively used for ARMA model-order selection. [1] 
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T. Jaisankar and M Ravikumar made an effort to develop an ARIMA model for tourist arrival to Tamilnadu 
and to apply the same in forecasting for the years to come. [2] 
The study by Jai Sankar and J. Poorvaraghavan, (2012) targets the forecasting export of liquid bulk in 
Chennai port by using different forecasting techniques.  Export through Chennai is done in four categories 
Container, Break bulk, Dry bulk and Liquid bulk.  Liquid bulked is important for Indian revenue and it has 
been exported through Chennai port. The data for export of liquid bulk from 1987-88 to 2010-11 has taken 
from Chennai port and analysed using Autoregressive Integrated Moving Average models. ARIMA (0, 1, 1) 
was selected as its best fit for the data. The forecast of the model illustrates that the export of Liquid bulk 
from Chennai port would raise to 20, 29, 154 tonnes in 2014-15. [3] 
C. Umasankar et al (2012), developed a linear statistical model with first order autoregressive scheme for the 
errors has been specified and estimated the parameters of the model by an iterative method of estimation 
using studentized residuals. Later, this proposed model has been used to obtain the feasible forecasts. [4] 
In time series analysis the moving average model is common approach for modeling univariate time series 
models. A moving average model is conceptually a linear regression of the current value of the series against 
the white noise error terms of one or more prior values of the series. The errors at each time point are 
assumed to come from the same distribution with location at zero and constant scale. The distinction in this 
model is that these errors are propagated to future values of the time series. Since the errors are unobservable, 
the fitting of the moving average models is more complicated than autoregressive models. 
P Balasiddamuni et al proposed two modified estimation procedures for time series linear statistical models 
involving MA(1) and MA(q) process errors.[5] 

Variate difference method 

Notations: 
Let t denote the time in years. Let tZ  denote the Age adjusted rate in the year t. 
If the series can be represented as sum of functional part and random component as given below 
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Homogeneity of two successive estimate of V cannot be tested by variance ratio test (F-test) since the 
consecutive terms are not independent. O. Anderson obtained the standard error of )( 1 kk VV and found 
for large samples 
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Where kV and   1kV   are consecutive estimates of V from the kth , thk )1(   differences of tZ  and kNH
is a function of k and N. If 96.1kR  the difference is significant at 5% level of significance otherwise 
not. [7] 
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Where  065.925,1 H 99.1125,2 H 944.1225,3 H  

 96.11 R  implies that there is no significant difference between 1V  and 2V  values. Therefore first degree 

or second degree model can be treated as good fit for forecasting the future values.  Also we can observe the 

fitted trend in Figure: 1. 1 

 
Figure 1. A second degree trend of lung cancer in males in Bengaluru 

  
From the second degree equation, 

 3,2,1,2
210 ttataaZ t  

202919.07010.01547.11 ttZ t   
The forecasts of prevalence of lung cancer in the coming years is available in the following table 
 

TABLE I. AGE ADJUSTED RATES OF LUNG CANCER IN MALES IN BENGALURU  
ARE FORECASTED FOR THE FOLLOWING YEARS 

 t 26 31 36 41 

Year 2010 2015 2020 2025 

AAR 12.66 17.47 23.75 31.48 
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Time series data of lung cancer in females in Bengaluru is obtained from the National Cancer Registry 
Programme. [a] 
 
In case of females we have 293959.01 V , 21058.02 V , 186932.03 V ,  17949.04 V  
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model fits well for the data to forecast the future Age Adjusted Rates. 
 

 
Figure 2. A second degree trend for lung cancer in females in Bengaluru 

First we fit a second degree trend to the prevalence of lung cancer in females.  The trend equation is                                             
                     3,2,1,2

210 ttataaZ t                                        

i.e                  3,2,1,01026.014946.058389.3 2 tttZ t  

TABLE II. AGE ADJUSTED RATES OF LUNG CANCER IN FEMALES IN BENGALURU  
ARE FORECASTED FOR THE FOLLOWING YEARS 

    t 26 31 36 41 

Year 2010 2015 2020 2025 

AAR 5.10 8.79 9.96 13.16 
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Figure 3. A third degree trend for lung cancer in females in Bengaluru 

Secondly we fit a third degree trend to the prevalence of lung cancer in females.  The trend equation is 
 3,2,1,3

3
2

210 ttatataaZ t  

          i.e   3,2,1,0005887.00127.009377.04855.1 3 ttttZ t  

TABLE III. AGE ADJUSTED RATES OF LUNG CANCER IN FEMALES IN BENGALURU 
ARE FORECASTED FOR THE FOLLOWING YEARS 

   t 26 31  36 41 
Year 2010 2015 2020 2025 
AAR 5.64 9.72 15.86 24.54 

 
The forecasted values for the future years give best values when cubic polynomial is fitted for the data.  

II. ALTERNATE MEASURES OF FORECASTING ERRORS 

The following are the some of the important measures of forecasting errors which help us in selection of an 
appropriate model for forecasting. 

Root Mean Squared Error (RMSE) 
This is the statistic whose value is minimized during the parameter estimation process, and it is the statistic 
that determines the width of the confidence intervals for predictions. The 95% confidence intervals for one-
step-ahead forecasts are approximately equal to the point forecast “ plus or minus 2 standard errors” ie plus 
or minus 2 times the RMSE. The RMSE can only be compared between models whose errors are measured in 
the same units.  

The RMSE is given by                  
N
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Mean Absolute Percentage errors (MAPE) 
The mean absolute percentage error (MAPE) is also often useful for purposes of reporting, because it is 
expressed in generic percentage terms which will make some kind of sense even to someone who has no idea 
what constitutes a “big” error in terms of given units in the data. The MAPE can only be computed with 
respect to data that are guaranteed to be strictly positive. The MAPE of 10% is considered very good, a 
MAPE in the range 20% -30% or even higher is quite common. 

0

1

2

3

4

5

6

1980 1985 1990 1995 2000 2005 2010 2015

AAR

 
Year 



 

 
925 

 

The MAPE is given by                      
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Mean absolute error (MAE) 
MAE is another popular error measure that corrects the canceling out effects by averaging the absolute values 
of the differences between forecast and the corresponding observation. The MAE is a linear score which 
means that all the individual differences are weighted equally in the average. 
MAE is a quantity used to measure how close forecasts or predictions are to the eventual outcomes. Where a 
prediction model is to be fitted using a selected performance measure, in the sense that the least square 
approach is related to the mean squared error, the equivalent for mean absolute error is least absolute 
deviations. 

The mean absolute error is given by          MAE= 
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At the end, we should put more weights on the error measures in the estimation period, most often the 
RMSE, but sometimes MAE or MAPE, when comparing among models. A model which fails some of the 
residual tests or reality checks in only a minor way is probably subject to further improvement, where as it is 
the model which flunks such tests in a major way that cannot be considered as a good model. 

TABLE IV.  ERROR IN FORECASTING 

Model for Lung cancer  RMSE MAPE MAE 

Males second degree Equation 0.7952 8.0435 0.6696 

Lung cancer in Females, second degree Equation 0.510245 22.0209 0.4268 

Lung cancer in Females, third degree Equation 0.4804 17.788 0.3949 

III. CONCLUSIONS 

Since the above models were constructed using variate difference method all the above models are good. The 
error involved in the estimation of the Z value is not significant. 
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